Electrohydrodynamic model of vesicle deformation in alternating electric fields.

نویسندگان

  • Petia M Vlahovska
  • Rubèn Serral Gracià
  • Said Aranda-Espinoza
  • Rumiana Dimova
چکیده

We develop an analytical theory to explain the experimentally observed morphological transitions of quasispherical giant vesicles induced by alternating electric fields. The model treats the inner and suspending media as lossy dielectrics, and the membrane as an impermeable flexible incompressible-fluid sheet. The vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. Our approach, which is based on force balance, also allows us to describe the time evolution of the vesicle deformation, in contrast to earlier works based on energy minimization, which are able to predict only stationary shapes. Our theoretical predictions for vesicle deformation are consistent with experiment. If the inner fluid is more conducting than the suspending medium, the vesicle always adopts a prolate shape. In the opposite case, the vesicle undergoes a transition from a prolate to oblate ellipsoid at a critical frequency, which the theory identifies with the inverse membrane charging time. At frequencies higher than the inverse Maxwell-Wagner polarization time, the electrohydrodynamic stresses become too small to alter the vesicle's quasispherical rest shape. The model can be used to rationalize the transient and steady deformation of biological cells in electric fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental investigation on the Electrohydrodynamic motion and Shape Deformation of a sedimenting Drop under Uniform Alternating Electric Field

A leaky dielectric Newtonian drop suspended in another leaky dielectric Newtonian liquid medium deforms as it settles under the influence of a uniform alternating electric field. As a result of this deformation, the terminal velocity is affected. In this study we present a detailed experimental investigation of the effect of horizontally directed uniform alternating electric field on the settli...

متن کامل

Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field.

In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the rest...

متن کامل

Thick Film Deposition of Carbon Nanotubes by Alternating Electrophoresis

Electrophoretic deposition of carbon nanotubes (CNTs) using alternating current electric fields (0.01-1000 Hz) is reported. Pure acetone was used as suspending medium. Two parallel gold electrodes were used as depositing substrate. The effect of depositing parameters such as frequency and three waveforms (sinusoidal, rectangular and triangular) on deposit yield was investigated. According to ou...

متن کامل

Stability of Spherical Vesicles in Electric Fields

The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transition...

متن کامل

Dynamic angular segregation of vesicles in electrohydrodynamic flows.

We investigate a new type of behavior whereby small vesicles orbiting around a larger vesicle in a toroidal electrohydrodynamic flow undergo dynamic angular segregation. Application of a low frequency (approximately 50 Hz) electric field induces aggregation of adjacent unilamellar vesicles near the electrode, in a manner similar to that observed with rigid colloidal particles. For polydisperse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 12  شماره 

صفحات  -

تاریخ انتشار 2009